Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562906

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 × 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for future development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement: Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.

2.
RSC Med Chem ; 15(3): 1066-1071, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516600

ABSTRACT

We have developed a novel chemical handle (PFI-E3H1) and a chemical probe (PFI-7) as ligands for the Gid4 subunit of the human E3 ligase CTLH degradation complex. Through an efficient initial hit-ID campaign, structure-based drug design (SBDD) and leveraging the sizeable Pfizer compound library, we identified a 500 nM ligand for this E3 ligase through file screening alone. Further exploration identified a vector that is tolerant to addition of a linker for future chimeric molecule design. The chemotype was subsequently optimized to sub-100 nM Gid4 binding affinity for a chemical probe. These novel tools, alongside the suitable negative control also identified, should enable the interrogation of this complex human E3 ligase macromolecular assembly.

3.
J Med Chem ; 66(23): 16051-16061, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37996079

ABSTRACT

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.


Subject(s)
DNA , Small Molecule Libraries , DNA/chemistry , Gene Library , Ligands , Machine Learning , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry
4.
ACS Infect Dis ; 9(10): 1918-1931, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37728236

ABSTRACT

A collaborative, open-science team undertook discovery of novel small molecule inhibitors of the SARS-CoV-2 nsp16-nsp10 2'-O-methyltransferase using a high throughput screening approach with the potential to reveal new inhibition strategies. This screen yielded compound 5a, a ligand possessing an electron-deficient double bond, as an inhibitor of SARS-CoV-2 nsp16 activity. Surprisingly, X-ray crystal structures revealed that 5a covalently binds within a previously unrecognized cryptic pocket near the S-adenosylmethionine binding cleft in a manner that prevents occupation by S-adenosylmethionine. Using a multidisciplinary approach, we examined the mechanism of binding of compound 5a to the nsp16 cryptic pocket and developed 5a derivatives that inhibited nsp16 activity and murine hepatitis virus replication in rat lung epithelial cells but proved cytotoxic to cell lines canonically used to examine SARS-CoV-2 infection. Our study reveals the druggability of this newly discovered SARS-CoV-2 nsp16 cryptic pocket, provides novel tool compounds to explore the site, and suggests a new approach for discovery of nsp16 inhibition-based pan-coronavirus therapeutics through structure-guided drug design.

5.
J Med Chem ; 66(15): 10273-10288, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37499118

ABSTRACT

Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery. We report SGC-UBD253 (25), a chemical probe potently targeting HDAC6-UBD in vitro with selectivity over nine other UBDs, except for weak USP16 binding. In cells, 25 is an effective antagonist of HDAC6-UBD at 1 µM, with marked proteome-wide selectivity. We identified SGC-UBD253N (32), a methylated derivative of 25 that is 300-fold less active, serving as a negative control. Together, 25 and 32 could enable further exploration of the biological function of the HDAC6-UBD and investigation of the therapeutic potential of targeting this domain.


Subject(s)
Ubiquitin , Ubiquitins , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Protein Binding , Ubiquitin/metabolism , Zinc Fingers
6.
RSC Med Chem ; 14(6): 1002-1011, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360399

ABSTRACT

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions.

7.
J Chem Inf Model ; 63(13): 4070-4078, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37350740

ABSTRACT

DCAF1 functions as a substrate recruitment subunit for the RING-type CRL4DCAF1 and the HECT family EDVPDCAF1 E3 ubiquitin ligases. The WDR domain of DCAF1 serves as a binding platform for substrate proteins and is also targeted by HIV and SIV lentiviral adaptors to induce the ubiquitination and proteasomal degradation of antiviral host factors. It is therefore attractive both as a potential therapeutic target for the development of chemical inhibitors and as an E3 ligase that could be recruited by novel PROTACs for targeted protein degradation. In this study, we used a proteome-scale drug-target interaction prediction model, MatchMaker, combined with cheminformatics filtering and docking to identify ligands for the DCAF1 WDR domain. Biophysical screening and X-ray crystallographic studies of the predicted binders confirmed a selective ligand occupying the central cavity of the WDR domain. This study shows that artificial intelligence-enabled virtual screening methods can successfully be applied in the absence of previously known ligands.


Subject(s)
Artificial Intelligence , Carrier Proteins , Ligands , Carrier Proteins/chemistry , Ubiquitin-Protein Ligases/metabolism , Machine Learning
8.
J Med Chem ; 66(7): 5041-5060, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36948210

ABSTRACT

DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 µM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 µM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ligands , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/chemistry
9.
Nat Commun ; 14(1): 1364, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914634

ABSTRACT

Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.


Subject(s)
High-Throughput Screening Assays , Oxidation-Reduction
10.
J Am Chem Soc ; 145(14): 8176-8188, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36976643

ABSTRACT

Nuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark. UNC8153 contains a simple warhead that confers proteasome-dependent degradation of NSD2 through a novel mechanism. Importantly, UNC8153-mediated reduction of H3K36me2 through the degradation of NSD2 results in the downregulation of pathological phenotypes in multiple myeloma cells including mild antiproliferative effects in MM1.S cells containing an activating point mutation and antiadhesive effects in KMS11 cells harboring the t(4;14) translocation that upregulates NSD2 expression.


Subject(s)
Chromatin , Histones , Histones/metabolism , Gene Expression Regulation , Cell Line, Tumor , Down-Regulation
11.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802665

ABSTRACT

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Subject(s)
Signal Transduction , Ubiquitin-Specific Proteases , Gene Expression Regulation , Endopeptidases
12.
Cardiovasc Res ; 118(17): 3374-3385, 2023 01 18.
Article in English | MEDLINE | ID: mdl-35709329

ABSTRACT

AIMS: Methylation of non-histone proteins is emerging as a central regulatory mechanism in health and disease. The methyltransferase SETD7 has shown to methylate and alter the function of a variety of proteins in vitro; however, its function in the heart is poorly understood. The present study investigates the role of SETD7 in myocardial ischaemic injury. METHODS AND RESULTS: Experiments were performed in neonatal rat ventricular myocytes (NRVMs), SETD7 knockout mice (SETD7-/-) undergoing myocardial ischaemia/reperfusion (I/R) injury, left ventricular (LV) myocardial samples from patients with ischaemic cardiomyopathy (ICM), and peripheral blood mononuclear cells (PBMCs) from patients with ST-elevation MI (STEMI). We show that SETD7 is activated upon energy deprivation in cultured NRVMs and methylates the Hippo pathway effector YAP, leading to its cytosolic retention and impaired transcription of antioxidant genes manganese superoxide dismutase (MnSOD) and catalase (CAT). Such impairment of antioxidant defence was associated with mitochondrial reactive oxygen species (mtROS), organelle swelling, and apoptosis. Selective pharmacological inhibition of SETD7 by (R)-PFI-2 restored YAP nuclear localization, thus preventing mtROS, mitochondrial damage, and apoptosis in NRVMs. In mice, genetic deletion of SETD7 attenuated myocardial I/R injury, mtROS, and LV dysfunction by restoring YAP-dependent transcription of MnSOD and CAT. Moreover, in cardiomyocytes isolated from I/R mice and ICM patients, (R)-PFI-2 prevented mtROS accumulation, while improving Ca2+-activated tension. Finally, SETD7 was up-regulated in PBMCs from STEMI patients and negatively correlated with MnSOD and CAT. CONCLUSION: We show a methylation-dependent checkpoint regulating oxidative stress during myocardial ischaemia. SETD7 inhibition may represent a valid therapeutic strategy in this setting.


Subject(s)
Antioxidants , Histone-Lysine N-Methyltransferase , ST Elevation Myocardial Infarction , Animals , Mice , Rats , Apoptosis , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Leukocytes, Mononuclear/metabolism , Methylation , Myocytes, Cardiac/metabolism , ST Elevation Myocardial Infarction/metabolism , Mice, Knockout , Humans
13.
Nat Commun ; 13(1): 5453, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114190

ABSTRACT

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.


Subject(s)
RNA Polymerase II , SMN Complex Proteins , Humans , Motor Neurons/metabolism , Muscular Atrophy, Spinal/metabolism , RNA Polymerase II/drug effects , RNA Polymerase II/metabolism , SMN Complex Proteins/antagonists & inhibitors , SMN Complex Proteins/drug effects , SMN Complex Proteins/metabolism
14.
RSC Med Chem ; 13(1): 13-21, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35211674

ABSTRACT

Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.

15.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34782742

ABSTRACT

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Subject(s)
Cell Nucleolus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Molecular Probes/chemistry , Protein Domains , Repressor Proteins/metabolism , Methylation , Multiple Myeloma/metabolism , Nucleosomes/metabolism
16.
SLAS Discov ; 26(9): 1200-1211, 2021 10.
Article in English | MEDLINE | ID: mdl-34192965

ABSTRACT

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure-activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


Subject(s)
COVID-19/genetics , Exoribonucleases/genetics , Protein Binding/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Antiviral Agents/pharmacology , Binding Sites/genetics , COVID-19/virology , Humans , Methylation , Pandemics , RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Virus Replication/genetics
17.
SLAS Discov ; 26(8): 947-960, 2021 09.
Article in English | MEDLINE | ID: mdl-34154424

ABSTRACT

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Small Molecule Libraries , Structure-Activity Relationship
18.
bioRxiv ; 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33619486

ABSTRACT

The COVID-19 pandemic has clearly brought the healthcare systems world-wide to a breaking point along with devastating socioeconomic consequences. The SARS-CoV-2 virus which causes the disease uses RNA capping to evade the human immune system. Non-structural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small molecule inhibitors of nsp14 methyltransferase (MT) activity, we developed and employed a radiometric MT assay to screen a library of 161 in house synthesized S-adenosylmethionine (SAM) competitive methyltransferase inhibitors and SAM analogs. Among seven identified screening hits, SS148 inhibited nsp14 MT activity with an IC 50 value of 70 ± 6 nM and was selective against 20 human protein lysine methyltransferases indicating significant differences in SAM binding sites. Interestingly, DS0464 with IC 50 value of 1.1 ± 0.2 µM showed a bi-substrate competitive inhibitor mechanism of action. Modeling the binding of this compound to nsp14 suggests that the terminal phenyl group extends into the RNA binding site. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein methyltransferases. The structure-activity relationship provided by these compounds should guide the optimization of selective bi-substrate nsp14 inhibitors and may provide a path towards a novel class of antivirals against COVID-19, and possibly other coronaviruses.

19.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33591753

ABSTRACT

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Subject(s)
Benzodiazepinones/pharmacology , Enzyme Inhibitors/pharmacology , Nuclear Proteins/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Allosteric Regulation , Allosteric Site , Benzodiazepinones/chemical synthesis , Benzodiazepinones/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , HEK293 Cells , Humans , Nuclear Proteins/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism , Stereoisomerism
20.
J Med Chem ; 64(3): 1584-1592, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33522809

ABSTRACT

Increased activity of the lysine methyltransferase NSD2 driven by translocation and activating mutations is associated with multiple myeloma and acute lymphoblastic leukemia, but no NSD2-targeting chemical probe has been reported to date. Here, we present the first antagonists that block the protein-protein interaction between the N-terminal PWWP domain of NSD2 and H3K36me2. Using virtual screening and experimental validation, we identified the small-molecule antagonist 3f, which binds to the NSD2-PWWP1 domain with a Kd of 3.4 µM and abrogates histone H3K36me2 binding to the PWWP1 domain in cells. This study establishes an alternative approach to targeting NSD2 and provides a small-molecule antagonist that can be further optimized into a chemical probe to better understand the cellular function of this protein.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Computer Simulation , Crystallography, X-Ray , Drug Discovery/methods , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Histone-Lysine N-Methyltransferase/drug effects , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Domains , Repressor Proteins/drug effects , Small Molecule Libraries , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...